## 1.2.7. Осадки, снежный покров

(ГУ «Гидрохимический институт» Росгидромета, г. Ростов-на-Дону; Иркутское УГМС Росгидромета; ГУ «Иркутский ЦГМС-Р» Иркутского УГМС Росгидромета, Забайкальское УГМС Росгидромета; ГУ «Бурятский ЦГМС» Забайкальского УГМС Росгидромета)

Атмосферные осадки — одна из составляющих приходной части водного баланса оз. Байкал, вторая по значимости после речного стока. В виде дождя, снега и за счет конденсации из воздуха на поверхность озера за год выпадает 9,26 км³ осадков (в среднем 294 мм за год) или 13,2 % общего поступления влаги в озеро. Распределение осадков по водосборному бассейну озера Байкал крайне неравномерное. По среднегодовому количеству осадков в бассейне Байкала выделяется 5 областей: Северо-Байкальская (севернее рек Покойники и Турка) — 700 мм; Хамар-Дабанская — 1145 мм; Прибайкальская югозападная (от р. Ангара до р. Покойники) — 475 мм, Чикойская тайга — 555 мм, Селенгинская Даурия (бассейн р. Селенги без чикойской тайги) — 420 мм. Наименьшее количество осадков (в среднем 164 мм в год) выпадает на острове Ольхон и в Тажеранских степях в Приольхонье. 1)

Осадки и снежный покров на части территории Иркутской области, входящей в Байкальскую природную территорию. В 2010 г. годовое количество осадков было в пределах нормы, местами в юго-западной части территории и на западном побережье озера Байкал осадков выпало меньше обычного (60-80 %), на восточном побережье Байкала годовое количество осадков превысило средние многолетние значения (110-130 %).

В начале года (январь-март) на большей части территории количество выпавших за месяц осадков составило 10-25 мм, в горных районах - 40 мм, на побережье Байкала - 3-8 мм, что больше нормы (120-260 %), в северной части территории около и меньше нормы (75-80 %). В феврале и марте на большей части территории количество выпавших осадков было небольшим - 2-10 мм (20-90 %), в горных районах оно превысило норму (150-180 %) и составило 15-30 мм. Местами в западной части территории, включая западное побережье Байкала, отклонение от нормы составило 150-400 %, несмотря на то, что количество выпавших осадков не превышало 8 мм.

 $<sup>^{1)}</sup>$  Афанасьев А.Н. Колебания гидрометеорологического режима на территории СССР (в особенности в бассейне Байкала). – М.: Наука, 1967. –232 с.

Весной (апрель-май) осадки выпадали в виде снега, мокрого снега и дождя. В апреле по всей территории осадков выпало до 12 мм (в горах до 87 мм) — меньше нормы (20-90 %). В мае осадки выпадали в виде дождя, мокрого снега, местами снега и носили локальный характер, количество выпавших за месяц осадков составило 30-80 мм, превысив норму в 1,5-2 раза.

В течение теплого периода года распределение осадков было пространственно неравномерным.

В июне и августе на большей части территории, количество выпавших за месяц осадков составило 120-200 % среднего многолетнего количества за счет кратковременных ливневых дождей, наблюдавшихся в отдельные дни. Наиболее интенсивные дожди (30-40 мм за сутки) отмечались в западной и южной частях территории, в отдельных пунктах достигая критериев опасного явления.

Меньше обычного (40-80 %) осадков выпало в июле и сентябре на большей части территории, в августе в северной части и на побережье Байкала.

В октябре в северной части территории осадки выпадали часто, отмечалось 20-25 дней с осадками, что на 5-8 дней больше обычного, в результате этого месячное количество осадков оказалось в 1,5-2 раза больше среднего многолетнего, такая же аномалия сохранялась и в ноябре. На остальной территории в октябре-ноябре осадков было около и меньше нормы (20-80 %). В декабре на всей территории осадков выпало 150-250 %, в районе острова Ольхон 400-600 % нормы.

Накопление снега в течение зимы в экологической зоне атмосферного влияния Бай-кальской природной территории шло равномерно. Средняя высота снежного покрова к началу года составила 20-40 см, в горных районах 50-90 см (на 5-15 см выше нормы); в юго-западной части 15-20 см (около и на 5-10 см ниже нормы). К середине марта высота снежного покрова достигла максимальных значений, которые составили на большей части территории 30-40 см, в горных районах 130 см, в юго-западной части и на побережье Байкала 10-15 см. В связи с преобладанием в марте и начале апреля холодной погоды интенсивного таяния снега, которое обычно отмечается в это время, не наблюдалось. С установлением в середине апреля теплой погоды устойчивый снежный покров начал разрушаться на 1-3 недели позднее обычного. В мае на большей части территории (в июне в горных районах) после прохождения холодных атмосферных фронтов неоднократно устанавливался временный снежный покров.

В сентябре временный снежный покров устанавливался в начале месяца в горных районах, в середине и конце месяца на большей части территории и сохранялся от 1 до 5 дней. Устойчивый снежный покров образовался по северу территории в первой половине октября (на 1-2 недели раньше обычного), на большей части территории в первой половине ноября - в обычные сроки. В юго-западной части устойчивый снежный покров образовался необычно поздно, только во второй половине ноября, на 5-15 дней позднее средних многолетних сроков. В декабре в результате обильных снегопадов средняя высота снежного покрова составила 25-45 см, что на 10-15 см выше нормы; в юго-западной части территории 15-20 см (на побережье Байкала 5-10 см) — около и на 5-10 см ниже нормы. Много снега выпало в районе хребта Хамар-Дабан, к концу года средняя высота снежного покрова составила 60-80 см, на 15-30 см больше многолетней величины.

Осадки и снежный покров на части территории Республики Бурятия, входящей в Байкальскую природную территорию. За январь 2010 года количество выпавших осадков составило по северному побережью 11-23 мм, южному берегу 22-26 мм, больше климатической нормы, среднему Байкалу 5-6 мм, меньше нормы. Высота снега на конец января достигала 25-35 см.

В феврале месячная сумма осадков по побережью Байкала составила по северному побережью 11 мм, южному берегу 16-20 мм, больше нормы, по остальному побережью 5-8 мм, около и больше нормы.

В марте снега по северному побережью Байкала выпало значительно меньше нормы -3-4 мм; по южному берегу 18-23 мм, около и больше нормы, по среднему Байкала 6-11 мм, больше нормы.

Осадки в апреле выпадали в основном в виде мокрого снега. Сумма осадков за месяц от 4 мм в Нижнеангарске до 21 мм в Танхое, меньше нормы, в Горячинске 22 мм, 1,5 месячной нормы.

Осадки в первой половине мая прошли в виде дождя и мокрого снега, во второй половине в виде дождя. Месячная сумма осадков составила 26-30 мм, в Танхое -50 мм, больше нормы.

Сумма осадков в июле составила по северному побережью составила 50-79 мм, больше нормы, по остальному побережью от 22 до 44 мм, меньше нормы, в июле выпало от 45 до 113 мм, меньше нормы.

Сумма осадков за август от 43 до 69 мм, около и больше средних климатических значений, по южному берегу в Бабушкине 156 мм, 1,5 нормы, в Танхое 422 мм, более двух месячных норм.

Сумма осадков в сентябре от 24 до 87 мм, меньше нормы; в октябре от 8 до 19 мм, менее половины нормы, в Танхое 44 мм, меньше нормы, в Нижнеангарске 48 мм - 2 месячные нормы; в ноябре от 22 до 54 мм, больше нормы. Осадки в октябре и ноябре отмечались в виде мокрого снега и снега. С середины ноября установился снежный покров.

В декабре снега выпало 34-70 мм, в Горячинске 122 мм, 1,5-2,5 нормы.

Осадки и снежный покров на части территории Забайкальского края, входящей в Байкальскую природную территорию. Сумма осадков, выпавших в 2010 г., была близка к среднему многолетнему количеству, 333-362 мм (97-106 % нормы), в Петровск-Забайкальском районе 270 мм (79 % нормы).

В январе — марте выпало 11-19 мм, это 130-140 % - нормы, в апреле — мае - 41-111 мм (100-300 % нормы), в Петровск-Забайкальском районе наблюдался дефицит осадков, 20 мм (65 % нормы).

В июле-августе по Читинскому и Улетовскому районам отмечался дефицит осадков, 172-184 мм (72-74 % нормы), по Петровск-Забайкальскому, Хилокскому, Красночикойскому районам 183-216 мм (82-88 % нормы).

В сентябре-октябре в Улетовском, Хилокском, Красночикойском районах выпало 47-64 мм, около и больше среднего многолетнего количества (85-133 % нормы). В Читинском, Петровск-Забайкальском районах меньше среднего многолетнего количества , 30-36 мм (56-70 % нормы).

В конце сентября и в октябре осадки шли в виде дождя и мокрого снега. Временный снежный покров высотой 1-4 см, в Красночикойском районе до 16 см, устанавливался 23-26 сентября; высотой 3-12 см -13-15 и 21-24 октября.

В начале зимы 2010-2011 гг. (ноябрь-декабрь) количество осадков составило 20-28 мм, что составило 1-2,5 сезонных нормы (105-267%).

Высота снежного покрова на конец декабря составила 7-20 см.

Поступление химических веществ из атмосферы в 2010 году в районе озера Байкал, как и в предыдущие годы, определялось по данным химического анализа ежемесячно отбираемых проб осадков в следующих пунктах: город Байкальск (район БЦБК), на станциях Хамар-Дабан, исток Ангары, Хужир. Количество осадков за год на указанных станциях составило (в мм): 764,4; 1246,3; 413,6; и 133,5, соответственно; наибольшее количество осадков выпало в теплый период года.

Влияние антропогенного фактора в районе южного побережья озера оценивалось по результатам гидрохимической съемки снежного покрова, отбор проб проведен с 24 по 30 марта 2010 г. Время формирования состава и количества примесей в нем занимало 69-158 дней. Пробы отбирались в трех районах: на 100 кв. км у южной оконечности озера в

районе пгт. Култук, г. Слюдянка - 12 проб; вдоль трассы Байкальск - Кабанск на 220 кв. км - 8 проб и в районе г. Байкальск на 480 кв. км. - 42 пробы.

В сравнении с 2009 г. произошло снижение поступления суммы всех контролируемых минеральных, органических и труднорастворимых веществ в 1,3 раз на ст. Исток Ангары до в 2,3 раза на станции г. Байкальск. Характерной особенностью для района г. Байкальск было резкое, в 7 раз, снижение в 2010 г. поступления из атмосферы труднорастворимых соединений и значительный, в 2,5 раза рост выпадений суммы минеральных веществ. По отдельным компонентам (сульфатам, соединениям серы) увеличение было значительнее - в 5 раз.

Увеличение поступления, в 1,5 раза, отмечено по органическим веществам на ст. Исток Ангары. В ионном составе осадков определены следующие интервалы в относительном содержании отдельных преобладающих компонентов:  $HCO^{3-}$  - 19-27 % экв,  $SO^{4-}$  - 18-25 % экв,  $Mg^{2+}$  - 12-25 % экв,  $Cu^{2+}$  - 14-16 % экв,  $NH^{4+}$  - 11-20 % экв.

Групповые показатели поступлений из атмосферы в холодный период 2009-2010 гг. в районе пгт. Култук, г. Слюдянка были в 1,5-4 раза ниже, чем в 2008 г. и в 2009 г., а вдоль трассы оказались сопоставимыми с данными 2008-2009 гг.

В районе г. Байкальск произошло увеличение поступления углеводородов, летучих фенолов, несульфатной серы в 8-9 раз, общего азота, общего фосфора, щелочных металлов в 1,2-1,5 раза. Повсеместно во всех 3-х контролируемых районах отмечен рост величины поступления углеводородов относительно общей массы органических веществ. В районе птт. Култук – г. Слюдянка от 0,4 до 1 %, вдоль трассы от 0,7 до 3,7 %, районе г. Байкальск от 0.3 до 3.2 %.

На всей контролируемой площади 800 кв. км средние групповые показатели поступления в 2-5 раз превышали региональные фоновые характеристики холодного периода. Максимальное превышение в 14-17 раз отмечено по углеводородам вдоль трассы и в районе г. Байкальск.

Данные гидрохимической съемки снежного покрова, сформировавшегося к концу марта 2010 г., позволяют выделить ряд характерных особенностей распределения загрязняющих веществ в районе г. Байкальск.

Летучие серосодержащие и фенольные соединения распространялись за пределы контролируемого полигона. Основное накопление этих веществ в снежном покрове достигало максимума с северо-восточного сектора на удалении 15-20 км от основного источника выброса БЦБК. Рассчитанные пространственные характеристики поступления серы нелетучей и летучих фенолов показывают, что площадь обнаружения этих веществ может достигать 1000 кв. км, а с учетом пятнистости распространения примесей – до 4000 кв. км.

По-прежнему, в пределах контролируемого полигона в районе г. Байкальск, выделяется зона сильного загрязнения. Размеры ее площади в холодный период 2009-2010 гг. составили 350 кв. км. Групповые показатели здесь в 2 раза выше, чем в зоне относительно слабого загрязнения, а по отношению к местным фоновым характеристикам - в 3-6 раз.

Следует отметить, что в апреле-мае, в период интенсивного таяния (стаивания) снежно-ледникового покрова с изученной площади происходит значительный вынос загрязняющих веществ в озеро. В сравнении с выносом сопоставимых по составу веществ с водой р. Селенга в холодный период 2010 г. в акваторию южного прибрежья поступило в результате таяния снежно-ледового покрова до 70 % труднорастворимых веществ, 35 % углеводородов, около 6-7 % органических веществ, в том числе летучих фенолов, 1-1,5 % по отдельным минеральным компонентам состава от поступления этих же веществ с водами р. Селенга. Непропорциональность относительных величин выноса обусловлена существенными расхождениями группового состава. Для р. Селенга соотношение минеральных, органических, труднорастворимых веществ (в %) — 94:5:2, в снежном покрове 41:17:42.

По результатам контроля 2010 БЦБК наращивает мощность выбросов загрязняющих веществ в атмосферу, о чем свидетельствует рост поступления летучих соединений

серы, фенольных соединений, минеральных веществ, углеводородов на поверхность озера и береговую полосу. В загрязнении вод южного Байкала, кроме указанных выше веществ, значительное место в холодный период занимают осаждающиеся труднорастворимые вещества. Их относительная доля сопоставима с выносом в зимний период взвешенных веществ с водой рек бассейна озера.

Основные результаты по всем пунктам контроля приведены в таблице 1.2.7.1.

Таблица 1.2.7.1 Поступления химических веществ из атмосферы в районе озера Байкал с 1999 г. по 2010 г., тонн/км² в год

| Местопо-                | Время<br>отбора<br>проб | Минеральные вещества        |               |                          | Органи-  | Трудно-           | Сумма                                                         |  |  |  |  |  |  |
|-------------------------|-------------------------|-----------------------------|---------------|--------------------------|----------|-------------------|---------------------------------------------------------------|--|--|--|--|--|--|
| ложение,                |                         | Сумма в том                 |               | числе                    | ческие   | раство-           | минераль-                                                     |  |  |  |  |  |  |
| пункт<br>отбора<br>проб |                         | мине-<br>ральных<br>веществ | Сульфа-<br>ты | Азот<br>минераль-<br>ный | вещества | римые<br>вещества | ных, орга-<br>нических и<br>труднораст-<br>воримых<br>веществ |  |  |  |  |  |  |
| Южный Байкал            |                         |                             |               |                          |          |                   |                                                               |  |  |  |  |  |  |
| город                   | 1999 г.                 | 20.2                        | 3.1           | 0.77                     | 7.1      | 22.1              | 49.4                                                          |  |  |  |  |  |  |
| Байкальск               | 2000 г.                 | 15.8                        | 4.34          | 0.79                     | 7.62     | 19.8              | 43.22                                                         |  |  |  |  |  |  |
|                         | 2001 г.                 | 37.3                        | 11.6          | 0.31                     | 10.8     | 28.4              | 76.5                                                          |  |  |  |  |  |  |
|                         | 2002 г.                 | 37.7                        | 8.3           | 0.5                      | 17.7     | 12.6              | 68.0                                                          |  |  |  |  |  |  |
|                         | 2003 г.                 | 28.7                        | 7.9           | 0.7                      | 22.1     | 14.7              | 65.5                                                          |  |  |  |  |  |  |
|                         | 2004 г.                 | 21.6                        | 8.1           | 0.37                     | 19.4     | 22.6              | 63.6                                                          |  |  |  |  |  |  |
|                         | 2005 г.                 | 19.1                        | 5.3           | 0.24                     | 10.7     | 11.1              | 40.9                                                          |  |  |  |  |  |  |
|                         | 2006 г.                 | 25.2                        | 6.2           | 0.36                     | 16.0     | 12.9              | 54.1                                                          |  |  |  |  |  |  |
|                         | 2007 г.                 | 36.8                        | 10.4          | 0.16                     | 21.7     | 11.8              | 70.3                                                          |  |  |  |  |  |  |
|                         | 2008 г.                 | 53.2                        | 17.1          | 0.40                     | 10.5     | 50.5              | 114.2                                                         |  |  |  |  |  |  |
|                         | 2009 г.                 | 10.3                        | 1.1           | 0.17                     | 23.0     | 112.5             | 145.8                                                         |  |  |  |  |  |  |
|                         | 2010 г.                 | 26.2                        | 5.3           | 0.86                     | 22.9     | 15.4              | 64.5                                                          |  |  |  |  |  |  |
| станция                 | 1999 г.                 | 19.3                        | 1.1           | 0.61                     | 3.1      | 3.7               | 26.1                                                          |  |  |  |  |  |  |
| Хамар-                  | 2000 г.                 | 27.2                        | 2.49          | 0.8                      | 9.2      | 9.0               | 45.4                                                          |  |  |  |  |  |  |
| Дабан                   | 2001 г.                 | 19.3                        | 1.76          | 0.55                     | 3.1      | 4.9               | 27.3                                                          |  |  |  |  |  |  |
|                         | 2002 г.                 | 20.1                        | 1.8           | 0.8                      | 10.8     | 16.1              | 47.0                                                          |  |  |  |  |  |  |
|                         | 2003 г.                 | 32.2                        | 2.7           | 1.2                      | 14.0     | 5.1               | 51.3                                                          |  |  |  |  |  |  |
|                         | 2004 г.                 | 27.0                        | 2.9           | 1.36                     | 12.2     | 7.0               | 46.2                                                          |  |  |  |  |  |  |
|                         | 2005 г.                 | 33.2                        | 4.9           | 1.26                     | 7.8      | 10.0              | 51.0                                                          |  |  |  |  |  |  |
|                         | 2006 г.                 | 23.4                        | 2.4           | 0.98                     | 3.7      | 4.2               | 31.3                                                          |  |  |  |  |  |  |
|                         | 2007 г.                 | 28.7                        | 3.8           | 1.38                     | 15.7     | 11.3              | 55.7                                                          |  |  |  |  |  |  |
|                         | 2008 г.                 | 30.9                        | 5.8           | 0.97                     | 29.6     | 73.9              | 134.4                                                         |  |  |  |  |  |  |
|                         | 2009 г.                 | 29.1                        | 3.2           | 1.13                     | 5.2      | 11.1              | 45.4                                                          |  |  |  |  |  |  |
|                         | 2010 г.                 | 20.2                        | 3.8           | 0.86                     | 5.4      | 7.8               | 33.4                                                          |  |  |  |  |  |  |
| станция                 | 1999 г.                 | 6.6                         | 1.8           | 0.56                     | 7.0      | 26.4              | 40.0                                                          |  |  |  |  |  |  |
| Исток Ан-               | 2000 г.                 | 9.8                         | 1.81          | 0.47                     | 12.0     | 34.1              | 55.9                                                          |  |  |  |  |  |  |
| гары                    | 2001 г.                 | 6.9                         | 2.4           | 0.34                     | 6.9      | 20.6              | 34.4                                                          |  |  |  |  |  |  |
|                         | 2002 г.                 | 8.8                         | 1.9           | 0.6                      | 3.4      | 12.8              | 25.0                                                          |  |  |  |  |  |  |
|                         | 2003 г.                 | 15.1                        | 4.0           | 0.5                      | 15.8     | 30.1              | 61.0                                                          |  |  |  |  |  |  |
|                         | 2004 г.                 | 7.0                         | 1.8           | 0.52                     | 14.6     | 14.0              | 35.6                                                          |  |  |  |  |  |  |
|                         | 2005 г.                 | 7.7                         | 2.4           | 0.48                     | 7.7      | 15.0              | 30.4                                                          |  |  |  |  |  |  |
|                         | 2006 г.                 | 10.1                        | 2.8           | 0.62                     | 10.2     | 16.6              | 36.9                                                          |  |  |  |  |  |  |
|                         | 2007 г.                 | 11.4                        | 2.8           | 0.64                     | 14.2     | 23.8              | 49.4                                                          |  |  |  |  |  |  |
|                         | 2008 г.                 | 6.7                         | 2.3           | 0.44                     | 11.1     | 28.2              | 45.9                                                          |  |  |  |  |  |  |
|                         | 2009 г.                 | 7.8                         | 2.4           | 0.47                     | 9.4      | 43.0              | 60.2                                                          |  |  |  |  |  |  |
|                         | 2010 г.                 | 7.8                         | 2.6           | 0.35                     | 14.3     | 25.9              | 48.0                                                          |  |  |  |  |  |  |

| Местопо-<br>ложение,<br>пункт<br>отбора<br>проб | Время<br>отбора<br>проб | Мине                        | ральные вец   | цества                   | Органи-  | Трудно-           | Сумма                                                         |  |  |  |  |  |  |
|-------------------------------------------------|-------------------------|-----------------------------|---------------|--------------------------|----------|-------------------|---------------------------------------------------------------|--|--|--|--|--|--|
|                                                 |                         | Сумма в том                 |               | числе                    | ческие   | раство-           | минераль-                                                     |  |  |  |  |  |  |
|                                                 |                         | мине-<br>ральных<br>веществ | Сульфа-<br>ты | Азот<br>минераль-<br>ный | вещества | римые<br>вещества | ных, орга-<br>нических и<br>труднораст-<br>воримых<br>веществ |  |  |  |  |  |  |
|                                                 | Средний Байкал          |                             |               |                          |          |                   |                                                               |  |  |  |  |  |  |
| станция                                         | 1999 г.                 | 4.1                         | 1.0           | 0.2                      | 9.2      | 13.3              | 26.6                                                          |  |  |  |  |  |  |
| Хужир                                           | 2000 г.                 | 5.06                        | 0.96          | 0.4                      | 2.9      | 8.2               | 16.16                                                         |  |  |  |  |  |  |
| (остров                                         | 2001 г.                 | 4.4                         | 0.95          | 0.23                     | 3.4      | 11.1              | 18.9                                                          |  |  |  |  |  |  |
| Ольхон)                                         | 2002 г.                 | 2.1                         | 0.4           | 0.1                      | 2.4      | 7.2               | 11.7                                                          |  |  |  |  |  |  |
|                                                 | 2003 г.                 | 2.6                         | 0.5           | 0.1                      | 6.7      | 20.6              | 29.9                                                          |  |  |  |  |  |  |
|                                                 | 2004 г.                 | 3.5                         | 0.4           | 0.28                     | 2.7      | 25.1              | 31.3                                                          |  |  |  |  |  |  |
|                                                 | 2005 г.                 | 2.3                         | 0.4           | 0.12                     | 2.0      | 9.9               | 14.3                                                          |  |  |  |  |  |  |
|                                                 | 2006 г.                 | 2.9                         | 0.5           | 0.13                     | 2.5      | 6.3               | 11.7                                                          |  |  |  |  |  |  |
|                                                 | 2007 г.                 | 3.8                         | 0.7           | 0.20                     | 5.1      | 19.5              | 28.4                                                          |  |  |  |  |  |  |
|                                                 | 2008 г.                 | 11.6                        | 1.1           | 0.17                     | 8.9      | 35.6              | 56.2                                                          |  |  |  |  |  |  |
|                                                 | 2009 г.                 | 3.5                         | 0.8           | 0.18                     | 22.0     | 62.5              | 88.0                                                          |  |  |  |  |  |  |
|                                                 | 2010 г.                 | 2.5                         | 0.5           | 0.13                     | 24.9     | 24.8              | 52.2                                                          |  |  |  |  |  |  |

Сравнение суммарных показателей поступления веществ из атмосферы в районе озера Байкал за последние 12 лет приведено на рис. 1.2.7.1.

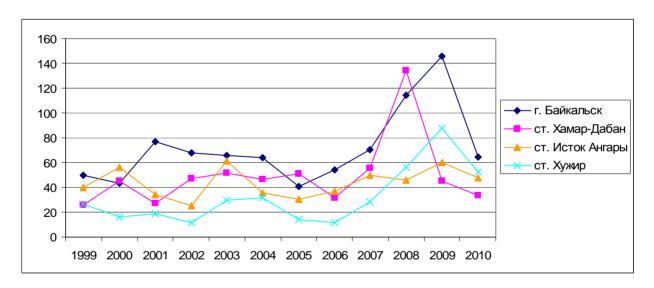



Рис. 1.2.7.1. Сравнение суммарных показателей поступления веществ из атмосферы в районе озера Байкал с 1999 по 2010 гг.

Снежный покров **центральной экологической зоны БПТ** в 2010 г. был обследован в зоне влияния БЦБК (радиусом до 20 км включительно); вдоль железнодорожной магистрали на участке Байкальск – Кабанск и на акватории южной оконечности оз. Байкал, в окрестностях пгт. Култук и г. Слюдянка. Снежный покров прибрежной зоны формировался в течение 137-157 дней; на ледовой поверхности озера - в течение 70-72 дней. В период снегонакопления в г. Байкальске и его окрестностях преобладали ветра юго-западного направлений с повторяемостью 29-60 %, повторяемость штилей - от 2 до 15 %, слабых ветров - от 40 до 81 %. В окрестностях г. Слюдянка и пгт. Култук в период снегонакопления на ледовой поверхности озера преобладали ветра западных направлений с повторяемо-

стью 52 - 72 %; повторяемость штилей составила от 15 до 24 %, слабых ветров – от 35 до 56 %.

В зоне влияния БЦБК, средняя величина рН талой воды составила 6,58, варьировала от 5,3 до 7,7. Плотности выпадения взвешенных веществ и сульфатов на снежный покров варьировали от 69 до 1437 кг/км²•мес. и от 9,0 до 159 кг/км²•мес., соответственно, плотности выпадения общей серы варьировали от 4 до 49 кг/км²•мес., несульфатной серы - от 0 до 4,8 кг/км²•мес. Среднее значение потока взвешенных веществ составило 263,9 кг/км²•мес., сульфатов – 41,5 кг/км²•мес., серы общей – 13,24 кг/км²•мес., серы несульфатной – 0,54 кг/км²•мес.

Концентрации нелетучих фенолов в талой воде колебались от 0 до 0,002 мг/дм<sup>3</sup>, нефтепродуктов – от 0,02 до 0,86 мг/дм<sup>3</sup>, минеральных веществ – от 9 до 52 мг/дм<sup>3</sup>. Средняя концентрация нелетучих фенолов составляла 0,0005 мг/дм<sup>3</sup>, нефтепродуктов – 0,096 мг/дм<sup>3</sup>, минеральных веществ – 18,9 мг/дм<sup>3</sup>. Средние плотности выпадений соединений тяжелых металлов (г/км<sup>2</sup>•сутки) соответствовали: растворимых соединений ртути – 0,1 (от 0 до 0,39), молибдена – 0,02 (от 0 до 0,77), алюминия – 0,08 (от 0 до 3,3), хрома – 0,02 (от 0 до 0,79); валовых форм соединений свинца – 2,3 (от 0 до 14,7), кадмия – 0,08 (от 0 до 1,14), цинка – 6,3 (от 0,8 до 35,7), никеля – 1,1 (от 0 до 9,9), меди – 2,9 (от 0,02 до 17,4), кобальта – 0,29 (от 0 до 1,7), марганца – 4,0 (от 0 до 33,7) и железа – 192,7 (от 0 до 1646,5). Соединения ванадия, серебра и бериллия в растворимой форме не обнаружены.

На участке Байкальск – Кабанск, средняя величина рН талой воды составила 5,79, варьировала от 5,12 до 6,46. Плотности выпадения взвешенных веществ и сульфатов на снежный покров колебались в пределах от 60 до 963 кг/км $^2$ •мес. и от 15 до 66 кг/км $^2$ •мес. соответственно. Среднее значение потока взвешенных веществ составило 279 кг/км $^2$ •мес., сульфатов – 33 кг/км $^2$ •мес.

Концентрации нелетучих фенолов в талой воде колебались от 0 до 0,003 мг/дм<sup>3</sup>, нефтепродуктов – от 0,03 до 0,68 мг/дм<sup>3</sup>, минеральных веществ – от 9 до 19 мг/дм<sup>3</sup>. Средняя концентрация нелетучих фенолов в талой воде составляла 0,0004 мг/дм<sup>3</sup>, нефтепродуктов – 0,24 мг/дм<sup>3</sup>, минеральных веществ – 12,9 мг/дм<sup>3</sup>. Средние плотности выпадений соединений тяжелых металлов составляли (г/км<sup>2</sup>•сутки): растворимых соединений ртути – 0,01 (от 0 до 0,03), алюминия – 0,002 (от 0 до 0,012); валовых форм соединений свинца – 1,9 (от 0 до 6,8), кадмия – 0,02 (от 0 до 0,06), цинка – 6,4 (от 1,5 до 24,6), никеля – 0,76 (от 0,06 до 2,67), меди – 1,3 (от 0,3 до 4,2), кобальта – 0,2 (от 0,03 до 0,4), марганца – 2,9 (от 0,3 до 10,5) и железа – 219,5 (от 0,4 до 1010,2). Соединения молибдена, хрома, ванадия, серебра и бериллия в растворимой форме не обнаружены.

На ледовой поверхности южной оконечности оз. Байкал, средняя величина рН талой воды составила 5,76, варьировала от 5,2 до 6,2. Плотности выпадения взвешенных веществ и сульфатов на снежный покров варьировали от 51 до 501 кг/км²•мес. и от 3,0 до 30 кг/км²•мес. соответственно. Среднее значение потока взвешенных веществ составило 244,5 кг/км²•мес., сульфатов — 15,0 кг/км²•мес. Концентрации нефтепродуктов в талой воде колебались от 0,03 до 0,09 мг/дм³, минеральных веществ — от 9 до 32 мг/дм³. Средняя по обследованной территории концентрация нефтепродуктов в снеге составляла 0,05 мг/дм³, минеральных веществ — 18,6 мг/дм³. Средние плотности выпадений соединений тяжелых металлов составляли (г/км²•сутки): растворимых соединений ртути -0,004 (от 0 до 0,007), молибдена — 0,01 (от 0 до 0,08), алюминия — 3,4 (от 0 до 17,8), хрома — 0,2 (от 0 до 1,5); валовых форм соединений свинца — 1,6 (от 0 до 3,5), кадмия — 0,01 (от 0 до 0,04), цинка — 2,5 (от 0,5 до 4,6), никеля — 3,4 (от 0,4 до 6,9), меди — 7,1 (от 0,7 до 18,6), кобальта — 1,2 (от 0,1 до3,1), марганца — 5,0 (от 0,9 до 10,0) и железа — 1441,7 (от 1,1 до 3159,4). Нелетучие фенолы и соединения ванадия, серебра и бериллия в растворимой форме в снежном покрове южной акватории Байкала не обнаружены.

Из специфических загрязняющих веществ наибольший поток выпадения ртути, молибдена, цинка, свинца и сульфатов по территории в целом отмечался вблизи БЦБК и вдоль трассы Байкальск - Кабанск. Нелетучие фенолы встречаются в основном в снеге зоны влияния БЦБК, наибольшее содержание нефтепродуктов отмечено в юго-западных окрестностях с. Кабанск. Минерализация снега наиболее высока в окрестностях гг. Слюдянка и Байкальск.

## Выводы

- 1. В пределах контролируемого полигона в районе г. Байкальск, остается стабильной зона сильного загрязнения снежного покрова. Ее площадь в холодный период 2009-2010 гг. составила 350 кв. км.
- 2. По результатам контроля 2010 г. состояния атмосферных осадков и снежного покрова отмечено, что Байкальский ЦБК наращивает мощность выбросов загрязняющих веществ в атмосферу, о чем свидетельствует рост поступления летучих соединений серы, фенольных соединений, минеральных веществ, углеводородов на поверхность озера и береговую полосу.