1.2.9. Радиационная обстановка

(ФГБУ «Иркутский ЦГМС-Р» Иркутского УГМС Росгидромета; Забайкальское УГМС Росгидромета; Бурятский ЦГМС - филиал ФГБУ «Забайкальское УГМС»)

Иркутская область. В 2013 году в части территории Иркутской области, входящей в Байкальскую природную территорию, контроль радиационной обстановки осуществлялся по показателям:

- мощность экспозиционной дозы гамма-излучения (МЭД) на местности на 18 станциях (Ангарск, Байкальск, Баяндай, Б. Голоустное, Бохан, Давша, Иркутск, Инга, Исток Ангары, Качуг, Патроны, Сарма, Усолье-Сибирское, Усть-Ордынский, Хомутово, Шелехов, Черемхово);
- суммарная бета-активность атмосферных выпадений на 8 станциях (Ангарск, Баяндай, Бохан, Иркутск, Качуг, Усолье-Сибирское, Усть-Ордынский, Хомутово);
- концентрации радиоактивных аэрозолей в приземном слое атмосферы на одной станции (ОГМС г. Иркутск).

Величина МЭД в населенных пунктах Байкальской природной территории находилась в пределах нормы и не превышала контрольного уровня (60 мкР/час). Среднегодовой гамма-фон (14 мкР/час) был стабильным, колебался в пределах 7-30 мкР/час и находился на уровне регионального фона (12 мкР/час). Максимальные значения МЭД — 30 мкР/час, зарегистрированные 5 июля на станции Сарма, не достигали критического уровня МЭД для этой станции (32 мкР/час).

Суммарная бета-активность атмосферных выпадений. Результаты мониторинга суммарной бета-активности атмосферных выпадений показали, что в 2013 году на Байкальской природной территории отмечались значительные колебания содержания радиоактивных продуктов. Годовая сумма выпадений из атмосферы бета-активных продуктов варьировала в пределах $667.2-1117.9~{\rm K/M^2\cdot rod}$ (в 2012 - от 541,2 до 1079,3 ${\rm K/m^2\cdot rod}$). Средняя за год величина плотности выпадений из атмосферы долгоживущей бета-активности изменялась по станциям от 1,5 до 3,0 ${\rm K/m^2\cdot cyrku}$ (в 2012 от 1,9 до 3,0 ${\rm K/m^2\cdot cyrku}$). Средневзвешенная за год на этих станциях не изменилась и составила 2,6 ${\rm K/m^2\cdot cyrku}$, т.е. находилась в пределах регионального фона 2,8 ${\rm K/m^2\cdot cyrku}$.

Максимальное значение бета-активности наблюдалось 13 декабря на станции Хомутово -19,9 Бк/м²·сутки и не достигало уровня высокого загрязнения -28 Бк/м²·сутки (критерий высокого загрязнения -10-кратное увеличение суммарной бета-активности выпадений радиоактивных веществ по сравнению со средними значениями).

Гамма-спектрометрический анализ атмосферных выпадений показал отсутствие в них техногенных радионуклидов. Среднегодовые концентрации радионуклидов естественного происхождения составляли: 226 Ra $-102,33E^{-5}$ Бк/кг (максимальная $-247,70E^{-5}$ Бк/кг отмечена в феврале); 7 Be $-80,46E^{-5}$ Бк/м 3 (максимальная $-224,90E^{-5}$ Бк/м 3 отмечена в августе); 232 Th $-70.03E^{-5}$ Бк/м 3 (максимальная $-88,90E^{-5}$ Бк/кг отмечена в январе).

В радиоактивных аэрозолях среднемесячные концентрации долгоживущей бета-активности находились в пределах $32-107\cdot10^{-5}$ Бк/м³ (в 2012- от $25\cdot10^{-5}$ до $85\cdot10^{-5}$ Бк/м³). Максимальный уровень концентрации радиоактивных веществ наблюдался 10 февраля $-370\cdot10^{-5}$ Бк/м³ (в 3.8 раза превысил среднесуточную концентрацию за предыдущий месяц) и не достигал уровня высокого загрязнения (критерий высокого загрязнения - 5-кратное увеличение концентрации радиоактивных аэрозолей в воздухе по сравнению со средними значениями).

Результаты гамма-спектрометрического анализа проб атмосферных аэрозолей показали, что наибольшая среднемесячная объемная активность отмечалась для 7 Be, ее значения колебались от $234\cdot10^{-5}$ Бк/м 3 (январь) до $693\cdot10^{-5}$ Бк/м 3 (август). Наименьшая среднемесячная объемная активность зарегистрирована для 22 Na, значения варьировали от $0,01\cdot10^{-5}$ Бк/м 3 (январь) до $0,09\cdot10^{-5}$ Бк/м 3 (апрель). Средняя объемная активность за рассматриваемый период соответствовала $0,05\cdot10^{-5}$ Бк/м 3 . Наименьшая среднемесячная объемная активность для радионуклидов техногенного происхождения отмечается для $^{137}\mathrm{Cs}$ - $0.04\cdot10^{-5}$ Бк/м 3 , и менялась от $0.02\cdot10^{-5}$ Бк/м 3 (январь) до $0.12\cdot10^{-5}$ Бк/м 3 (август).

Основное загрязнение атмосферного воздуха обусловлено естественными радионуклидами, кроме 137 Cs, других радионуклидов техногенного происхождения в пробах аэрозолей не обнаружено.

Результаты радиационного мониторинга свидетельствуют о том, что радиационная обстановка на Байкальской природной территории в 2013 году оставалась стабильной и находилась на уровне естественного фона.

Республика Бурятия. В 2013 году в части территории Республики Бурятия, входящей в Байкальскую природную территорию, контроль радиационной обстановки осуществлялся по показателям: величина МЭД - на 17 станциях, суммарная бета-активность атмосферных выпадений — на 3 станциях.

Величина МЭД в населенных пунктах Бурятии, расположенных на Байкальской природной территории, изменялись от 8 мкР/ч (с. Горячинск) до 22 мкР/ч (с. Мухоршибирь). Среднегодовой радиационный фон составил 15 мкР/ч (в 2012 г. - 14 мкР/ч), что несколько выше средних многолетних значений для территории Республики Бурятия.

Наибольшее колебание радиационного фона наблюдалось в с. Мухоршибирь от 19 до 22 мкР/ч (август). Максимальное значение МЭД - 30 мкР/ч зафиксировано 12 июня. Максимальное среднегодовое значение МЭД - 19 мкР/ч (в 2012 г. - 17 мкР/ч), так же наблюдалось в данном населенном пункте.

В г. Улан-Удэ в течение года радиационный фон изменялся от 14 мкР/ч до 19 мкР/ч (в 2012 г. - от 14 мкР/ч до 16 мкР/ч). Максимальное значение -20 мкР/ч наблюдалось в июле, августе, октябре, ноябре, декабре (в 2012 г. -19 мкР/ч в августе).

Суммарная бета-активность атмосферных выпадений. Измерения суммарной бета-активности атмосферных выпадений проводились на трех станциях: Баргузин, Нижнеангарск и Улан-Удэ. Среднее за год значение суммарной бета-активности атмосферных выпадений на Байкальской природной территории составило 1,2 Бк/м^2 -сутки, что соответствует уровню прошлого года. Максимальная суточная величина — 6,7 Бк/m^2 -сутки — наблюдалась 21-22 декабря в г. Улан-Удэ и по оценке уровней радиоактивного загрязнения окружающей среды не достигла критического значения (12,0 Бк/m^2 -сутки).

Таким образом, районы Республики Бурятия, где проводятся режимные наблюдения, являются благополучными как по гамма-фону (за исключением нескольких случаев по с. Мухоршибирь), так и по суммарной бета-активности.

Забайкальский край. В 2013 году в части территории Забайкальского края, входящей в Байкальскую природную территорию, в составе сети радиационного мониторинга работали 5 пунктов по измерению МЭД гамма-излучения (Красный Чикой, Менза, Могзон, Петровский Завод, Хилок); в одном пункте (Хилок) осуществлялся контроль суммарной бета-активности атмосферных выпадений.

Величина МЭД. В течение 2013 года средние за месяц значения МЭД изменялись от 7 мкР/ч (с. Менза) до 20 мкР/ч (пос. Могзон). Среднее за год значение МЭД как и в прошлом году составило 15 мкР/ч, что несколько выше по сравнению с территорией Забайкальского края (14 мкР/ч). Максимальное среднегодовое значение МЭД – 17 мкР/ч (в 2012 г. - 16 мкР/ч) – наблюдалось в г. Петровск-Забайкальский. Максимальная величина МЭД в населенных пунктах края, расположенных на Байкальской природной территории, составила - 27 мкР/ч – зафиксировано дважды: 9 и 13 сентября в пос. Могзон.

Суммарная бета-активность выпадений. В течение года суммарная бета-активность выпадений из атмосферы в г. Хилок колебалась от 1,1 Бк/м 2 -сутки до 1,6 Бк/м 2 -сутки (в 2012 г. - от 0,7 Бк/м 2 -сутки до 1,4 Бк/м 2 -сутки) и в среднем за год составила 1,3 Бк/м 2 -сутки, что в 1,2 раза выше среднего значения за 2012 год. Максимальная суточная величина – 4,1 Бк/м 2 -сутки – наблюдалась 21-22 июля и не достигла критического значения (14,0 Бк/м 2 -сутки).

Оценка изменения показателей радиационной обстановки на БПТ представлена в таблице 1.2.9.1.

Оценка изменения показателей радиационной обстановки на БПТ в 2012-2013 годах

Показатели радиационной обстанов-ки			Иркутская об- ласть			Республика Бу- рятия			Забайкальский край		
			2012	2013	% изменения к 2012	2012	2013	% изменения к 2012	2012	2013	% изменения к 2012
Величина МЭД	мкР/час	min	8	7	-13	8	14	75	12	7	-42
		сред.	13	13	0	14	15	7	15	15	0
		max	24	30	25	26	30	15	27	27	0
Суммарная бета-активность атмосферных выпадений	Бк/м ² ·сутки	min	1,9	1,5	-21				0,7	1,1	57
		сред.	2,6	2,6	0	1,2	1,2	0	1,1	1,3	18
		max	14,9	19,9	34	8	6,7	-16	5,8	4,1	-29
Концентрации радиоактивных аэрозолей	10 ⁻⁵ Бк/м ³	min	25	32	28	Измерения не проводились					
		сред.									
		max	217	370	71						

Примечания: изменения значений показателей показаны цветом: желтым – в пределах 10 %, зеленым – уменьшение более 10 %, оранжевым – увеличение более 10 %.

Выводы

Радиационная обстановка на Байкальской природной территории в 2013 году не превышала критических значений. По сравнению с 2012 годом наблюдалось некоторое увеличение показателя МЭД по всей Байкальской природной территории. По остальным измеряемым показателям радиационная обстановка не превышала критических значений и оставалась примерно такой же как и в 2012 году.

Таблица 1.2.9.1